SparkCognition DeepArmor: AI-basierte Erkennung von maliziösen PowerShell-Scripts

DeepArmor Enterprise ist ein leistungsfähiger Vertreter aus dem Bereich der Next Generation AV-Lösungen. Next Gen-Lösungen verwenden in der Regel künstliche Intelligenz (AI) sowie machine learning oder deep learning, um auch neue und unbekannte Bedrohungen wirkungsvoll erkennen und stoppen zu können. In der aktuellen Version 1.44 ist DeepArmor die erste Lösung, die maliziöse PowerShell-Scripts ausschließlich mit Hilfe der AI Engine erkennt. Die sog. “in-memory protection” sorgt dafür, dass selbst stark obfuskierte Scripte erkannt und geblockt werden. In unserem Demovideo sehen Sie, wie DeepArmor Enterprise sowohl unbehandelte als auch modifizierte PowerShell-Scripts problemlos erkennt und die Ausführung wirkungsvoll verhindert, während im Vergleich dazu eine signaturbasierte AV-Lösung die obfuskierten Versionen nicht erkennt und demnach auch nicht blocken würde.

Warum ist das ganze so interessant? Zum einen sind bösartige PowerShell-basierte Scripts mittlerweile stark verbreitet und kommen sowohl bei aktuellen Malspam-Kampagnen zum Einsatz (meist in Form von weaponized documents, also präparierte Office-Dokumente) als auch bei gezielten Angriffen gegen Unternehmen (APT = Advanced Persistant Threat). Die Bedrohung durch maliziöse PowerShell-Scripts wird laut einem Bericht von Symantec noch weiter wachsen. Um es anhand von Zahlen zu verdeutlich: Die Verwendung von maliziösen PowerShell-Scripts ist im Zeitraum der zweiten Jahreshälfte 2017 bis zum Ende des ersten Halbjahrs 2018 um 661(!) Prozent gestiegen.

Angreifer passen ihre TTPs (Tools, Tactics and Procedures) regelmäßig an. Dass insbesondere in Unternehmen das Whitelisting bzw. Blacklisting von Scripts zu einem hohen administrativen Aufwand mit entsprechenden Personalaufwand und Kosten führen kann und deshalb häufig vermieden wird, wissen professionelle Angreifer natürlich auch. Hinzu kommt, dass PowerShell ein Betriebssystembestandteil ist und bösartige Scripts deshalb auf jedem Endgerät ausgeführt werden können, auf dem PowerShell installiert ist. Konventionelle Lösungen versuchen mit Hilfe von Behavior Monitoring (Verhaltensanalyse von Anwendungen), Sandboxing oder HIPS die Ausführung von maliziösen Scripts zu verhindern. Hierbei kommt es allerdings oft zu false positives und damit verbunden auch zu einem hohen administrativen Aufwand. SparkCognition DeepArmor hingegen verwendet ausschließlich seine AI Engine und wurde mit einem umfangreichen Dataset trainiert, um bösartige von legitimen PowerShell-Scripts unterscheiden zu können.

Machen Sie sich selbst ein Bild von der Leistungsfähigkeit von SparkCognition DeepArmor, denn AI ist die Zukunft.

Kontaktieren Sie uns, wenn Sie mehr über SparkCognition DeepArmor Enterprise erfahren wollen. Wir sind offizieller DeepArmor-Partner und helfen gerne weiter.

SparkCognition DeepArmor vs. Vega Stealer: Schützen Sie Ihr Unternehmen vor Datenabfluss!

Proofpoint hat eine neue Malware namens Vega Stealer entdeckt, die im Rahmen einer malspam campaign an diverse Unternehmen und Organisationen ausgeliefert wurde. Vega stealer versucht sensible Daten wie gespeicherte Anmeldedaten für Websites oder Kreditkartennummern sowie sensitive Dokumente von infizierten Endgeräten zu stehlen und diese an einen Command & Control-Server zu übermitteln. Davon abgesehen, dass diese Malware in der Lage ist, sensible Daten zu stehlen, ist es (wieder einmal!) interessant zu sehen, wie die Erkennungsrate bei Virustotal aussieht – erschreckend wäre wohl das richtige Wort dafür, denn Stand 13.05.18 0132h erkennen gerade einmal 12 von 62 Engines(!) diese Malware:

image

SparkCognition DeepArmor als typische Next-Generation-Lösung, die vollständig auf AI (Artificial Intelligence) und machine learning basiert, erkennt diese Malware mit einer Sicherheit von 100%.

image

DeepArmor arbeitet vollständig ohne Signaturen und kann mit Hilfe der AI Engine auch brandneue Bedrohungen erkennen, für die herkömmliche AV-Lösungen ein Signaturen-Update benötigen. Angesichts der am 25. Mai 2018 in Kraft tretenden Datenschutzgrundverordnung (DSGVO) ist es umso wichtiger, eine Endpoint Protection-Lösung zu verwenden, die auch unbekannte Bedrohungen zuverlässig abwehren kann. Signaturen waren gestern, AI ist heute. Bei einem data breach (Datenabfluss) muss innerhalb von 72 eine Meldung an die entsprechende Aufsichtsbehörde erfolgen, andernfalls drohen Unternehmen empfindliche Geldstrafen, die bis zu 4% des Jahresumsatzes betragen können.

Als deutscher SparkCognition-Partner beraten wir Sie gerne zum Einsatz von DeepArmor in Ihrem Unternehmen. Bei Fragen erreichen Sie uns per Mail unter info AT deeparmor.de oder über das Kontaktformular auf unserer Website. Für kleine und mittlere Unternehmen bieten wir einen Managed Service (MSITC Managed Endpoint Protection) an und unterstützen Sie beim Deployment von DeepArmor.

SparkCognition DeepArmor vs. new and dangerous wiper malware

Please use the excellent translation service Deepl for an English translation and copy & paste the text into the input field.

Ich habe heute einen sog. Wiper entdeckt, dessen Aufgabe darin besteht, sinnlos Dateien und wichtige Bereiche von Festplatten wie den MBR (Master Boot Record) zu überschreiben bzw. zu löschen und damit möglichst viel Schaden anzurichten. Bemerkenswert an diesem Sample sind für mich vor allem zwei Dinge:

1. Bekannte Namen wie KAV, Panda, EMSISOFT, Avira, Bitdefender usw. waren laut den auf Malwaretips durchgeführten Tests (nur für registrierte User sichtbar!) mit Hilfe von Verhaltenserkennung (behavior analysis) und/oder anderen dynamischen Erkennungsmethoden teilweise nicht in der Lage, diese gefährliche Malware zu erkennen und zu stoppen

2. Den vollen Schutz bieten viele konventionelle AV-Programme nur, solange ein Endgerät online ist. Sobald ein Endgerät keine Online-Verbindung mehr hat, ist der Malware-Schutz deutlich geschwächt

Die Erkennungsraten bei VirusTotal machen deutlich, dass die Erkennung von neuer Malware alleine durch Signaturen meines Erachtens in einer Sackgasse angelangt ist. DeepAmor verwendet machine learning und AI (Artificial Intelligence), um auch polymorphe Malware sowie 0-day threats wirkungsvoll erkennen und stoppen zu können.

Wie der Wiper zuschlägt, kann man in diesem Video ab 03:20 verfolgen. Als Beispiel kommt Panda Dome zum Einsatz:

SparkCognition DeepArmor stoppt diese Bedrohung sowohl im Offline- als auch im Online-Betrieb wirkungsvoll:

SparkCognition DeepArmor vs. Backdoors

Dass SparkCognition DeepArmor auch bei der Erkennung von Backdoors gute Leistungen zeigt, dürfte keine allzu große Überraschung sein. Um dies anhand eines praxisnahen Beispiels unter Beweis zu stellen, habe ich fünf Backdoors mit phantom-evasion erstellt. Mit Hilfe von phantom-evasion ist es möglich, payloads bzw. backdoors zu erstellen, die von einem Großteil der traditionellen AV-Scanner nicht erkannt werden. Gelingt es einem Angreifer, unerkannt in einem Unternehmen damit auf Endgeräten die Kontrolle zu übernehmen, ist es bis zum Data Breach (Datenabfluss) nicht mehr weit, was angesichts der ab 25. Mai 2018 EU-weit gültigen DSGVO (Datenschutzgrundverordnung/GDPR) extrem teuer werden kann, da in nicht gemeldeten Fällen von Datenabfluss an die zuständige Aufsichtsbehörde Bußgelder in Höhe von bis zu 4% des Jahresumsatzes eines Unternehmens verhängt werden können.

image

Zurück zum Thema. phantom-evasion habe ich als Beispiel dafür ausgewählt, wie traditionelle signaturbasierte Virenscanner bei der Erkennung und der Abwehr von aktuellen Bedrohungen immer mehr ins Hintertreffen geraten. Um die Leistungsfähigkeit von SparkCognition DeepArmor unter Beweis zu stellen, habe ich fünf Samples mit phantom-evasion erstellt und diese ebenfalls mit einem second opinion scanner (EMSISOFT EEK) und VirusTotal gegengeprüft. Die Ergebnisse sind in den folgenden Screenshots zu sehen, vorab möchte ich sie wie folgt zusammenfassen:

  • EMSISOFT EEK hat bei einem signaturbasierten Scan keines der Samples erkannt
  • VirusTotal bzw. die Scan Engines scheinen auch keines der Samples erkannt zu haben
  • DeepArmor hat alle Samples mit einer Wahrscheinlichkeit zwischen 63% und 90% erkannt, und zwar ausschließlich auf Basis von künstlicher Intelligenz (AI)

Die Wahrscheinlichkeit, dass es durch eine eingeschleuste Backdoor auf einem Endgerät in einem Unternehmensnetzwerk zum Datenabfluss kommen kann, ist heutzutage realer denn je. Dies gilt natürlich auch für kleine und mittelständische Unternehmen.

image

image

image

image

image

image

Sie sind an DeepArmor interessiert? Verwenden Sie das Kontaktformular oder senden uns eine E-Mail an info AT deeparmor.de, um mehr über DeepArmor und wirkungsvollen Schutz für Ihre Endgeräte im Unternehmen zu erfahren.